1 Fig. 8 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=(1-x) \mathrm{e}^{2 x}$, with its turning point P .

Fig. 8
(i) Write down the coordinates of the intercepts of $y=\mathrm{f}(x)$ with the x - and y-axes.
(ii) Find the exact coordinates of the turning point P .
(iii) Show that the exact area of the region enclosed by the curve and the x - and y-axes is $\frac{1}{4}\left(\mathrm{e}^{2}-3\right)$.

The function $\mathrm{g}(x)$ is defined by $\mathrm{g}(x)=3 \mathrm{f}\left(\frac{1}{2} x\right)$.
(iv) Express $\mathrm{g}(x)$ in terms of x.

Sketch the curve $y=\mathrm{g}(x)$ on the copy of Fig. 8, indicating the coordinates of its intercepts with the x - and y-axes and of its turning point.
(v) Write down the exact area of the region enclosed by the curve $y=\mathrm{g}(x)$ and the x - and y-axes.

2 Fig. 9 shows the curve with equation $y^{3}=\frac{x^{3}}{2 x-1}$. It has an asymptote $x=a$ and turning point P .

Fig. 9
(i) Write down the value of a.
(ii) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 x^{3}-3 x^{2}}{3 y^{2}(2 x-1)^{2}}$.

Hence find the coordinates of the turning point P , giving the y-coordinate to 3 significant figures.
(iii) Show that the substitution $u=2 x-1$ transforms $\int \frac{x}{\sqrt[3]{2 x-1}} \mathrm{~d} x$ to $\frac{1}{4} \int\left(u^{\frac{2}{3}}+u^{-\frac{1}{3}}\right) \mathrm{d} u$.

Hence find the exact area of the region enclosed by the curve $y^{3}=\frac{x^{3}}{2 x-1}$, the x-axis and the lines $x=1$ and $x=4.5$.

3 Fig. 9 shows the curves $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$. The function $y=\mathrm{f}(x)$ is given by

$$
\mathrm{f}(x)=\ln \left(\frac{2 x}{1+x}\right), x>0
$$

The curve $y=\mathrm{f}(x)$ crosses the x-axis at P , and the line $x=2$ at Q .

Fig. 9
(i) Verify that the x-coordinate of P is 1 .

Find the exact y-coordinate of Q .
(ii) Find the gradient of the curve at P. [Hint: use $\ln \frac{a}{b}=\ln a-\ln b$.]

The function $\mathrm{g}(x)$ is given by

$$
\mathrm{g}(x)=\frac{\mathrm{e}^{x}}{2-\mathrm{e}^{x}}, \quad x<\ln 2 .
$$

The curve $y=\mathrm{g}(x)$ crosses the y-axis at the point R .
(iii) Show that $\mathrm{g}(x)$ is the inverse function of $\mathrm{f}(x)$.

Write down the gradient of $y=\mathrm{g}(x)$ at R.
(iv) Show, using the substitution $u=2-\mathrm{e}^{x}$ or otherwise, that $\int_{0}^{\ln \frac{4}{3}} \mathrm{~g}(x) \mathrm{d} x=\ln \frac{3}{2}$.

Using this result, show that the exact area of the shaded region shown in Fig. 9 is $\ln \frac{32}{27}$.
[Hint: consider its reflection in $y=x$.]

