1 Fig. 8 shows the curve y = f(x), where $f(x) = (1 - x)e^{2x}$, with its turning point P.

Fig. 8

(i)	Write down the coordinates of the intercepts of $y = f(x)$ with the <i>x</i> - and <i>y</i> -axes.	[2]
(ii)	Find the exact coordinates of the turning point P.	[6]
(iii)	Show that the exact area of the region enclosed by the curve and the <i>x</i> - and <i>y</i> -axes is $\frac{1}{4}(e^2 - 3)$.	[5]
The	function $g(x)$ is defined by $g(x) = 3f(\frac{1}{2}x)$.	
(iv)	Express $g(x)$ in terms of x.	
	Sketch the curve $y = g(x)$ on the copy of Fig. 8, indicating the coordinates of its intercepts with <i>x</i> - and <i>y</i> -axes and of its turning point.	the [4]

(v) Write down the exact area of the region enclosed by the curve y = g(x) and the x- and y-axes. [1]

2 Fig. 9 shows the curve with equation $y^3 = \frac{x^3}{2x-1}$. It has an asymptote x = a and turning point P.

Fig. 9

(i) Write down the value of *a*.

(ii) Show that
$$\frac{dy}{dx} = \frac{4x^3 - 3x^2}{3y^2(2x - 1)^2}$$
.

Hence find the coordinates of the turning point P, giving the *y*-coordinate to 3 significant figures. [9]

(iii) Show that the substitution u = 2x - 1 transforms $\int \frac{x}{\sqrt[3]{2x-1}} dx$ to $\frac{1}{4} \int (u^{\frac{2}{3}} + u^{-\frac{1}{3}}) du$.

Hence find the exact area of the region enclosed by the curve $y^3 = \frac{x^3}{2x-1}$, the x-axis and the lines x = 1 and x = 4.5. [8]

[1]

3 Fig. 9 shows the curves y = f(x) and y = g(x). The function y = f(x) is given by

$$\mathbf{f}(x) = \ln\left(\frac{2x}{1+x}\right), \ x > 0.$$

The curve y = f(x) crosses the *x*-axis at P, and the line x = 2 at Q.

[2]

[4]

[5]

(i) Verify that the *x*-coordinate of P is 1.

Find the exact *y*-coordinate of Q.

(ii) Find the gradient of the curve at P. [Hint: use $\ln \frac{a}{b} = \ln a - \ln b$.]

The function g(x) is given by

$$g(x) = \frac{e^x}{2 - e^x}, \quad x < \ln 2.$$

The curve y = g(x) crosses the *y*-axis at the point R.

(iii) Show that g(x) is the inverse function of f(x).

Write down the gradient of y = g(x) at R.

(iv) Show, using the substitution $u = 2 - e^x$ or otherwise, that $\int_0^{\ln \frac{4}{3}} g(x) dx = \ln \frac{3}{2}$.

Using this result, show that the exact area of the shaded region shown in Fig. 9 is $\ln \frac{32}{27}$. [Hint: consider its reflection in y = x.] [7]